THE IDENTIFICATION OF SESQUITERPENE HYDROCARBONS FROM GAS-LIQUID CHROMATOGRAPHY RETENTION DATA

NIELS H. ANDERSEN AND MARK S. FALCOONE*
Department of Chemistry, University of Washington, Seattle, Wash. 98ro5 (U.S.A.)
(Received June 9th, 1969)

sUMMARY

The identification of sesquiterpenes by gas-liquid chromatography is evaluated. Retention indices (obtained using sesquiterpene standards rather than n-alkanes) were found to be the most reproducible form of GLC data. Retention data for fiftyfive sesquiterpenes and a number of saturated hydrocarbons obtained by hydrogenation of sesquiterpenes are reported.

INTRODUCTION

Until recently the study of the sesquiterpenes from natural sources has been plagued by separation problems since most plants produce complicated mixtures of very similar compounds. With the increased use of GLC ${ }^{1-3}$ and adsorption chromatography on selective phases (such as $\mathrm{AgNO}_{3}-$ silica) ${ }^{3-6}$ many sesquiterpenes of uriquestioned purity have been isolated. However, these unsaturated compounds generally are quite unstable and thus it is virtually impossible to keep large numbers of authentic samples for GLC comparison.

Ansong the goals of our research are biogenetic studies using radiolabeled sesquiterpene precursors in whole plants and plant extracts. In connection with these studies we required analytical techniques which would allow us to identify the components of gross mixtures available in only small amounts ($10 \mu \mathrm{~g}-\mathrm{romg}$). We felt that GLC on a number of different columns (with appropriate standardization procedures) sliould serve to identify the major sesquiterpene hydrocarbons in such mixtures.

At present, the less numerous, and more thoroughly studied, monoterpene hydrocarbons can be identified unambiguously by GLC on one or two columns (e.g. ref. 7). 'The retention data from such studies have generally been given in Kovats' indices or as retention times relative to a standard terpene. We felt that the more numerous sesquiterpenes** could be identified in a similar manner if retention data were obtained on a sufficient number of distinct selective phases.

[^0]METHODS AND MATERIALS

Materials

The sesquiterpenes were either obtained through the generosity of other workers in the field or by isolation from the appropriate essential oils. The identity and purity of these samples were verified through IR and NMR spectroscopy.
H. U. Daeniker (Givaudan Corp.) supplied α-cedrene, β-cedrene, valencene, and thujopsene. G. Ourisson (Institut de Chimie, Strasbourg, France) supplied longifolene, cyperene, caryophyllene, α-gurjunene, and calarene. V. Herout (Iristitute of Organic Chemistry and Biochemistry, Czech. Acad. of Science) supplied $\beta(\gamma)$-bisabolene, cyperene, γ-muurolene, ε-muurolene, γ-cadinene, β-bourbonene, humulene, the santalenes, and γ-amorphene. S. Dev (National Chemical Laboratory, Poona-8, India) supplied α-himachalene, β-himachalene, α-copaene, and β-selinene. L. Westrelt (Swedish Forest Products Research Laboratory, Ir4 86 Stockholm, Sweden) supplied longicyclene, α-muurolene, and γ-muurolene. J. E. McMurry (Univ. of California, Santa Cruz) supplied cyclosativene, sativene, and isosativene. Y. Hirose and Y. Ohta (The Institute of Food Chemistry, Osaka, Japan) supplied α-ylangene, δ-cadinene, α-amorphene, and α-muurolene.
δ-Selinene was obtained from β-selinene by treatment with formic acid. α Curcumene was isolated from the oil of Curcuma aromatica. α-Copaene, α-curcumene, longifolene, β-farnesene, β-curcumene, γ-curcumene, γ-cadinene, and δ-cadinene were isolated from the needle oil of Chamaecyparis nootkatensis ${ }^{8}$. β-Selinene and α-selinene were isolated from oil of celery. α-Zingaberene was isolated from oil of ginger. α Muurolene and δ-cadinene were isolated from rectified cade oil. Humulene and caryophyllene were isolated from wild ginger oil. Zizaene, cyclocopacamphene, β vetivenene, $4 \beta \mathrm{H}$-nootkata-I(IO), 7 (II), 8 -triene, and the antipodes of $5 \alpha \mathrm{H}$-selina4(I4), 7 -diene, and $5 a \mathrm{H}$-selina-4(I4),7(II)-diene were isolated from oil of vetiver and this work will be the subject of another commurication.

Methods

The analyses were performed on a $F \& M$ Scientific Series 700 labo atory chromatograph (Hewlett-Packard) equipped with WX filaments. The columns used were $16-50 \mathrm{ft} . \times 0.125 \mathrm{in}$. The stationary phase loading was $0.5-3 \%$ on silanized Chromosorb G. The columns had between 300-8oo theoretical plates per foot under normal operating conditions ($80-200^{\circ}, 15-40 \mathrm{cc} / \mathrm{min}$ flow of helium).

The sesquiterpenes and n-alkane standards were introduced as $2-10 \%$ solutions in n-decane. The injection volumes were $0.1-0.6 \mu \mathrm{l}$, delivered with a $1 \mu \mathrm{l}$ Hamilton syringe. Kovars' indices were calculated using n (even) n-alkanes or by the method given below. The odd n-alkanes generally lie on a different line than the even ones on a plot of $n v s . \log t_{R^{\prime}}$. Kovars' indices ${ }^{9}$ were calculated only when the peaks for the unknown and co-injected standards corresponded to those obtained from o.o2$0.2 \mu \mathrm{l}$ of a 5% solution of the pure substances. Careful studies indicated that overloading effects (skewing to longer retention time, peak broadening, etc.) could not be detected until the injection volume was $0.9 \mu l$ of a 5% solution. Thus all measurements were obtained from traces on which all of the important peaks were Gaussian and far below maximum loading.

The method of calculating Kovars' indices (using two sesquiterpenes as

Fig. I. Schematic GLC trace.
standards, A and B) and relative retentions is shown below, together with an illustrative trace (Fig. I):

$$
\begin{aligned}
& R R_{\mathrm{x}}(\text { rel. to } \mathrm{A})=\frac{t^{\prime} R(\mathrm{X})}{t^{\prime} R(\mathrm{std} \mathrm{~A})} \\
& I_{\mathbf{x}}=I_{\mathrm{std} \mathbf{A}}+\left(\frac{\log t^{\prime} R(\mathrm{X})-\log t^{\prime} R(\mathrm{std} \mathrm{~A})}{\log t^{\prime} R(\mathrm{std} \mathrm{~B})-\log t^{\prime} R(\operatorname{stcl} \mathrm{~A})}\right)\left(I_{\mathrm{std} B}-I_{\mathrm{stcd} \mathrm{~A}}\right)
\end{aligned}
$$

RESUITS AND DISCUSSION
The first problem was to determine the most reproducible form of retention data. Preliminary studies indicated that relative retention times (from $R R=0.4-2.0$) could be reproduced ($\pm 0.8 \%$) on a single column as long as the temperature was kept with a 5° range and the flow rates were controlled to $\pm 10 \%$. However, relative retentions could not be reproduced as well on other columns containing the same stationary phase. Kovars' indices were more reproducible from column to column but varied significantly with temperature (see Table I). We found that $\Delta I / \Delta T \sim$ + I.I for sesquiterpenes on Carbowax, and that $\Delta I \mid \Delta T$ increased on polar columns and was somewhat less on less selective non-polar phases. In all cases, the Kovats'

TABLE I
Kovats' indices of selected sesquiterpenes on Carbowax 20 M

Compound	I		ΔI
	132°	205°	
Longicyclene	1518.8	1598.5	80
a-Copaene	1521.5	1593	71.5
α-Cedrenc	1597.5	1689	91.5
Longifolene	1600.0	1697	97
Caryophyllenc	1618.5	1695.5	77
Humulene	1681.5	1765	83.5
Valencene	1725.5	1801	75.5
$\boldsymbol{\alpha - M u}$-Mrolene	1726	1792	66
$\boldsymbol{\gamma}$-Cadinene	1762	1835.5	73.5

indices increased with increasing temperature. Under normal laboratory conditions the oven temperature can be reproduced to $\pm 3^{\circ}$ and thus Kovars' indices could be reproduced to only ± 3.5 units (out of $1400-1900$ units) with all other sources of error discounted.

The temperature dependence variation in Kovats' indices ${ }^{1}$ within the sesquiterpenes is much less ($\Delta I / \Delta T=+1.1 \pm 0.25$ for the entire group) and thus Kovats' indices can be reproduced to $\pm I$ unit by using sesquiterpenes as standards rather than using even n-alkanes as is usually done. Our usual procedure consisted of determining (in the usual manner ${ }^{9}$) the Kovats' indices of a number of sesquiterpenes on a single phase on one day so as to minimize temperature variation. From then on, the indices of additional sesquiterpenes were determined using sesquiterpenes as standards (see Methods). We generally used α-copaene- α-cedrene-humulene- γ cadinene mixtures for standardization. The indices for sesquiterpenes on seven different stationary phases are collected in Table II. In addition, approximate indices can be calculated for other sesquiterpenes from GLC traces in the literature if the traces also show: (I) the air peak and peaks due to two sesquiterpenes for which standardized indices are available; or (2) peaks due to three sesquiterpenes for which standardized indices are known. Approximate Kovars' indices obtained in this way are included in Table II, and are indicated by an asterisk. Chromatographic data from refs. $1-3$ were used for these calculations. A trace of the hydrocarbon portion of the oil of Mentha piperita on Apiezon L^{3} was particularly informative. The trace included peaks for ylangene, humulene, and γ-cadinene which were used for standardization. The indices calculated for β-bourbonene, caryophyllene, γ-muurolene, $\alpha-$ muurolene, and δ-cadinene (also appearing in this oil) were within ± 3 units (average) of the values obtained by us.

Examination of the data presented in Table II quickly shows that all of these sesquiterpenes can be distinguished by the use of only two to three clifferent phases. Thus other workers should be able to confirm the identity of these substances by co-injection with two identified sesquiterpenes appearing in Table II. The types of selectivity displayed by various stationary phases will be discussed in detail in a later communication. However, some correlations deserve comment at this point. In every case except the himachalenes the exo-methylene isomers are eluted after the corresponding trisubstituted olefins. Comparison of the indices for α-curcumene and β curcumene (or δ-cadinene) reveals an increasing affinity (and therefore retention) for atomatics in going from Apiezon L to Carbowax and particularly DEGS. There are many other cases of position reversals not only on changing stationary phase but even with temperature changes on a single phase (see longicyclene- α-copaene, longifolene-caryophyllene-calarene, thujopsene-santalene, valencene- β-bisabolene-α-muurolene all on Carbowax 20M).

In the structure elucidation of sesquiterpenes it is a common practice to identify the carbon skeleton of a new sesquiterpene by hydrogenation to the fully saturated ring system. The saturated hydrocarbons are usually identified from their physical properties and by comparison of thick-film IR spectra with the published standards ${ }^{11}$. However, this method is not foolproof. The IR spectra of saturated hydrocarbons are particularly devoid of useful detail for such comparisons and these substances have very low rotatory powers. In addition, the hydrogenations involved usually introduce new asymmetric centers and the resulting products are mixtures of dia-
TABLE II
modified Kovats' indices of Sesquiterpenes

		$\begin{aligned} & \text { Apiezon L } \\ & I \overline{55} 5^{\circ} \end{aligned}$	$\begin{aligned} & S F-96 \\ & 170^{\circ} \end{aligned}$	$\begin{aligned} & S E-30 \\ & (U C-W 98) \\ & I 30^{\circ} \end{aligned}$	$\begin{aligned} & D C_{-71 o^{\mathrm{d}}}^{165^{\circ}} \end{aligned}$	$\begin{gathered} \underset{O F-I}{ } \\ I 32^{\circ} \end{gathered}$	Carbowax 20 M			$\begin{aligned} & \text { DEGS } \\ & 160^{\circ} \end{aligned}$	
		132°					165°	205°			
1	Cubebene*		1368								
2	$\boldsymbol{\alpha}$-Longipinene*			1359.5							
3	u-Ylangene	1401.5	1396.1		1454.5			1538.5		1653	
4	β-Elemene*	1410									
5	$\boldsymbol{\alpha}$-Bourbonene*	1410									
6	α-Copaene	1410.2	1400.5	1378.5	1459	1447	1521.5	1551.3	1593	1665	
7	Cyclosativene	1411.9	1399.7					1549		$(1684)^{\text {e }}$	
8	Longicyclene	1417.1	1409.1	1371	1454	1465	1518.8	1554	1598.5	1684	
9	Cyclocopacamphene	1417.8				1467.2		1555.4		1685.6	
10	β-Bourbonene	14 IS .3	1411.7	1386	1477.3	1477.5	1547	1586.5	1618	1714	
11	β-Farnesene	1429.2				1509		1668		1818.5	
12	Sativene	${ }^{4}+34.7$	1420.7					[594.5		(1738) ${ }^{\text {c }}$	
13	Cyperene	1446.6	1432.5	1398	1501	1493	1562	1606	1650	1736.5	
14	a-Gurjunene		1435.2	1413	1500.5	${ }^{1} 471$	1558	1591	1633	1712.5	
15	Caryophyllene	1451.7	1445.3	1417.5	1523	(5587)	1618.5	1655.5	1695.5	1835.5	
16	Longifolene	$1+64.0$	1440.2	1404	1517.5	1520	1600	1643	1697	1802.5	
17	Isosativene	1464	1440.9					1639		$(1797)^{\text {c }}$	
18	Calarene	1.46.0	${ }^{1}+59.7$	1435	1535.5	1513	1618	1655.5	1700	${ }_{1}$ So6	
19	β-Ylangene*			~ 1417.5							
20	β-Copaene*			~ 1422.5							
21	a-Cedrene	1473.4	$1+45.0$	~ 1414	1516	1518	1597.5	16.10	1659	1788.5	
22	Thujopsene	1476.1	1458.3	1430.5	1542.3	1540	1643	1684.2	1732	1858.5	
23	Aromadendrene*	~ 1.477									
24	\boldsymbol{a}-Maaliene*	~ 1477									
25	γ-Curcumene	148 S .9				1532.5					
26	β-Cedrene	1482.4	1454.8	1421	1533.5	1539.5	1624.5	1670	1714	1834.5	
27	\boldsymbol{a}-Curcumene	$\mathrm{I}_{4} \mathrm{~S}_{3}$	${ }_{4} 4^{80.4}$	(1475)	1589	1557.5		1787.5	(1854)	1992.5	
28	ε-Muurolene	$14{ }_{4}{ }_{4} .8$	(1474.0)	(1445)	(1561.5)	1552.5	(1675.5)	1713.8	(1759.5)	IS93.5	
29	Humulene	$14^{87.2}$	1476.6	1446.8	1561.5	1583.5	1681	1719	1765	1929.5	
30	Santalene(minor)		1459.5	$14{ }^{1}$	1535	1522	$164+5$	1671	1702	1830	
31	Santalene (major)			1454	$154{ }^{8}$	1533.5	1658	1683	1714.5	1843.5	
32	Selina-4(I_{4}), 7-diene ${ }^{\text {a }}$	1491.9	1475.7			$15{ }^{2}$		1694		1852.5	
33	δ-Selinene ${ }^{\mathbf{a}}$	1504.5						1728.5			
34	$\boldsymbol{\gamma}$-Muurolene	1505.7				1545		1725		1889	
35	$\boldsymbol{\gamma}$-Amorphene	1506.4				$15+4.5$		1724		r896.5	

TABLEIII
Kovats' indices of hydrogenation products of sesquiterpenes
Hydrogenations were performed using Adam's catalyst in all cases. The solvent was acetic acid unless otherwise specified.

Compounda	Hydrogenation product of	Retention inder			
		Apiezon L 155°	$\begin{aligned} & \text { SF-g } 6 \\ & \text { I70 } \end{aligned}$	Carbozax 20 MI 165°	$\begin{aligned} & \text { DEGS } \\ & I 75^{\circ} \end{aligned}$
Farnesanc	β-farnescne	1367.6		1354	1350
Bisabolane I	β-bisabolene	1458.4		1501	1557
Bisabolane I ${ }^{\prime \prime}$	β-curcumenel	1463.6		r 520.7	1586.5
Copaane 1	a-copaene	1477.2	1455.4	1598.8	1740
Copaane JIc		$1437 \cdot 3$	1420.6	1550	1676
Munrolane I	(2-mulurolene	1479.2	1454.7	1582	1713
Mutrolane II		1535.6	1505.6	1659	1808.5
Caclinan I	γ-cadinene ${ }^{\text {d }}$	1503.2	$14^{83} .4$	1618	1760
Cadinane II		1493.5	1478.4	I597	1728
Amorphane I	a-amorphene	1489.8	1463.4	1593	1718.2
Amorphane II		1524.4	1498.4	1648.5	1794.2
Calarano	calarenc	1508.1	1489.3	1670.5	1845.5
4,5ch-Eudesmane $=$ - selinane	β-sclinenc	1539.6	1509.5	1064.5	1819.4
Nootkitane	valencenc	1530.6	1500.9	1648	1796.2
Vetivanc $1=$ nootkatane	-	1529.8	1500.4	1649	I 797
Vetivane $1 \mathrm{l}=7$-epinootkatane		1553	1518.7	1683	I 84.3 .5
Cedrane I	β-cecirene	1521.3	1479.4	1662	1841.5
Cedrane II		1509.1	1470.3	~ 1651	~ 1826
Zizaane	zizaene	1513.1	1479.4	1660	1842.5

a When several diastereomeric products were obtained they are listed in order of decreasing proportion in the mixture obtained.
b The two bisabolanes are obtained in a $1: 1$ ratio from β-bisabolene. Hydrogenation of β-curcumene gives a i: 1.7 mixture of bisabolanes I and II respectively.
c Produced in higher yield when hydrogenation is performed with benzene as the solvent.
a δ-Cadinenc yields cadinane II, cadinane I, and mutrolane II as the major hydrogenation products.
e From either β-vetivenene or α-pyrovetivene.
stereomers-the exact composition varying with the placement of the double bonds in the original sesquiterpene. Here again, precise and reproducible GLC retention data could offer a more dependable basis for identification. To this end, we have hydrogenated some common sesquiterpenes and determined the Kovats' indices of the resulting liydrocarbons. The products obtained from the hydrogenation reactions were GI.C resolvable mixtures of diastereoners in all cases for which inspection of Dreiding models suggested nonstereospecific hydrogenation. The compositions of these mixtures and the structure assignments for the components will be the subject of another communication. Table III gives the indices for the major saturated products obtained. Kovars' indices for the hydrogenation products showed temperature
dependence similar to that of the sesquiterpenes themselves; for this reason the inclices were calculated using sesquiterpene standards.

Preliminary examinations of monoterpenes and oxygenated sesquiterpenes indicate that highly reproducible retention indices can be obtained by the internal standardization method used above for the sesquiterpene hydrocarbons. Extensions of Tables II and III and tables of retention indices for other natural products will be published periodically in the Chromatographic Data section of this journal.

ACKNOWLEDGEMENTS

The authors wish to thank professors G. Ourisson, V. Herout, S. Dev, L. Westrelt, and Y. Hirose for their generosity in supplying authentic sesquiterpenes and Givaudan Corporation and Fritzsche Brothers, Inc. for supplying oil samples.

Partial support of this research by a Frederick Gardner Cottrell Grant from the Research Corporation is acknowledged.

REFERENCES

1 IR. D. Hartley and C. H. Fawcett, Phytochemistry, 8 (1969) 637.
2 L. Westrelt, Acta Chem. Scand., 20 (1966) 2829.
3 R. Vlahov, M. Holub, I. Ognjanov and V. Herout, Collection Czech. Chem. Commun., 32 (1967) 808.

4 S. Witek and J. Krepinsky, Collection Czech. Chem. Commun., 3 (1966) 1 i 3.
5 A.S. Gupta and S. Dev, J. Chromatog., 12 (1963) 189.
6 N. P. Damodaran and S. Dev, Tetrahedron, 24 (1968) 4113.
7 T. Sakai, H. Mantse, R. E. Kepner, W. G. Jennings and W. M. Longhurst, J. Agr. Food Chem., I5 (1967) 1070.
8 N. H. Andersien and D. Syrdal, unpublished work.
9 E. Kovats, Helv. Chim. Acta, 41 (1958) 1915.
Io D. W. Theobald, Tetrahedron, 19 (1963) 2261.
1 I J. Pliva, M. Horais, V. Herout and F. Sorm, Die Terpene, Sammlung der Spektren und. physikalischen Kionstanten, Vol. J, Sesquiterpenc, Akademie Verlag, Berlin, 1960.
J. Chromatog., 44 (1969) 52-59

[^0]: * Undergraduate research participant, University of Washington, 1968-1969.
 ** At present at least a hundred distinct sesquiterpene hydrocarbons have been characterized. However, this probably accounts for only one third of the possible structures. Thus the retention data for a component of a mixture must also be precise (ancl depenclable) enough to indicate that a new substance has been isolated.

